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ABSTRACT
Thermal wave, namely wavelike behavior of heat propagation in transient
heat conduction, enjoys much attention due to the recent investigations
into phonon hydrodynamics in low-dimensional materials. In this paper, an
improved phonon Monte Carlo (MC) simulation algorithm is developed
based on the Callaway’s dual relaxation time approximation model, which
can deal with the coupling of normal and resistance scattering processes.
Via the method, more thermal wave evidences are observed from the
microscopic view of phonons, including overshooting and diffraction.
Furthermore, the ballistic and hydrodynamic thermal waves are deeply
studied. Two kinds of dissipation are found to exist in thermal waves,
namely spatial dissipation and resistance dissipation. The former keeps
the conservation of phonon momentum, but it lengthens the wavelength
and decreases the peak temperature. The latter destroys the phonon
momentum and keeps the original profile, lowering the peak temperature.
Finally, phonon transport phenomena in Ziman hydrodynamic regime and
diffusive regime are investigated, by introducing the scattering probability.
The propagation tendency of thermal energy is found to decrease with the
increasing scattering probability. The investigations into phonon hydrody-
namics help to understand the heat transport characteristics and improve
thermal management in low-dimensional materials.
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1. Introduction

Thermal wave, or so-called heat wave, attracts much attention because of the fascinating wavelike
behaviors of thermal transport [1–7], such as wave propagation [1–4], reflection [5–7], overshooting
[8–10] and refraction [11–13]. The investigations originate from the failure of Fourier’s law in
infinite thermal perturbation speed and anomalous heat conduction [14–16] and anomalous heat
conduction [17,18], and from the observation of the phenomena of second sound [19–26]. Several
hyperbolic heat conduction models were introduced to describe the thermal waves [27–36], such as
Cattaneo-Vernotte equation [25,26], phase lag model [27,28], Guyer-Krumhansl equation [29,30]
and thermomass transport model [34–36]. All the above models admit the hyperbolic nature of heat
transport. However, due to the lack of experimental evidences and even physical bases, they can just
give phenomenological descriptions to thermal waves and the wave nature of heat requires further
investigations.

The concept of phonons enables the microscopic image to understand heat transport phenomena
from particle dynamics on the bases of Boltzmann transport equation [18, 37–51]. Tang et al. [43]
adopted phonon Monte Carlo (MC) method to study the thermal wave and sorted them into two
categories, namely ballistic thermal wave and hydrodynamic thermal wave. As for ballistic thermal
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wave, phonons were free from being scattered and they propagated along with the original
directions. And hydrodynamic thermal wave was dominated by normal scattering process (N
process), where the phonon momentum was conserved. The transport behaviors of thermal
waves in ballistic-diffusive regime were studied [39, 41–43] and it was found that the resistance
scattering process (R process) dissipated the wave profiles exponentially. Recently, in low-
dimensional materials [44,45], such as graphene and boron nitride a wide hydrodynamic window
at a relatively high temperature were found, which drew much attention to the phonon hydro-
dynamics and hydrodynamic thermal waves [44–51]. Besides, the first experimental observations
of second sound in graphite at temperature above 100 K demonstrated the transport behaviors of
hydrodynamic thermal waves [52].

Numerical simulations are effective to obtain the propagation behaviors of thermal waves. Yao
et al. [53] declared to observe the propagation of thermal waves in graphene based on molecular
dynamics (MD). Cao and Tang [40–43] studied the thermal waves in ballistic-diffusive regime in
nanofilms and nanowires and found the superballistic characteristics of ballistic thermal wave due to
superposition. MC method can numerically solve the phonon Boltzman Transport Equation (PBTE)
by tracing the life of phonons [54–63]. The previous MC algorithms focused more on the influence
of R process and adopted Single Relaxation Time Approximation (SRTA) to solve the collision term
[56–59]. Besides, some algorithms used the full scattering matrix [50,64], but they were limited to the
investigations into the thermal conductivity in steady state due to the heavy calculation tasks. As
Guyer defined [32,45], according to the scattering types, phonons are transported in different
regimes, which are sorted into ballistic, Poiseuille hydrodynamic, Ziman hydrodynamic and kinetic
(diffusive) regimes. Callaway [65] thought that R process and N process existed at the same time and
N process had significant influences on thermal transport. Therefore, to include the effects of
N process in transient heat transport, Lacroix et al. [54] assumed the directions of phonons were
not altered after normal scattering process while R process emitted phonons in all directions evenly.
Lee [63] proposed a method based on Dual Relaxation Time Approximation (DRTA), and adopted
positive and negative energy particle couplings to conserve the thermal energy and phonon
momentum. In this paper, an improved phonon MC algorithm is developed based on DRTA,
which can consider the scattering mechanisms for N process by a complete probability function.
One advantage of this algorithm is that the contributions of the two processes are separated clearly,
which is helpful to deal with the coupled problems of R process and N process.

In Section 2, the details of the MC algorithm are presented. In Section 3, transient heat
conduction processes are simulated to study the wave behaviors of phonons in hydrodynamic
regime and a reasonable description of thermal waves from microscale viewpoint is obtained.
Meanwhile, the difference between ballistic thermal wave and hydrodynamic thermal wave is
discussed in detail. Furthermore, the transient heat transport phenomena in Ziman hydrodynamic
regime and diffusive regime are investigated in Section 3.3.

2. Method

2.1. Phonon Monte Carlo algorithm

Monte Carlo method is an effective way to numerically solve the phonon Boltzmann transport
equation. In this paper, the MC algorithm is developed to deal with the coupling of normal
scattering process and resistance scattering process. The phonon Boltzmann equation,

@f ðK; x; tÞ
@t

þ vgðKÞ � �f ðK; x; tÞ ¼ Cf ðK; x; tÞ (1)

where K, x, vg are respectively the phonon vector, space coordinate and group velocity of phonons,
describes the phonon propagation behaviors according to the drift process and scattering process. C,
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representing the phonon collisions, is very difficult to define exactly. Callaway’s DRTA [65,66] model
is adopted in this essay and the collision term is written as

Cf ¼ f0 � f
τR

þ fd � f
τN

(2)

where f0 and fd respectively represent the equilibrium Plank distribution

f0 ¼ 1

expð hωkBT
Þ � 1

(3)

and displaced plank distribution

fd ¼ 1

expðhω�hK�u
kBT

Þ � 1
(4)

τR and τN are the relaxation times of R process and N process, respectively.
It is assumed that the displaced Plank distribution fd is the steady distribution of the phonon

Poiseuille hydrodynamics. u is the drift velocity of phonons, which is demonstrated to be indepen-
dent from phonon vectors and phonon branches [44,51]. Thus, it is possible to describe the local
thermal state with phonon density e(x) and drift velocity u(x). It lays the foundation of the following
new algorithm.

The flowchart is plotted in Figure 1 to describe the phononMC algorithm. First, phonons are emitted
from the boundary with the given temperature. The drift process is discussed in Section 2.2. Since the
whole system is divided into many cells, the cell energy and momentum are then recorded. The
momentum here means that of the phonons being scattered in the normal scattering process in this
time step. Afterward, the temperature T and drift velocity ud are calculated, and they are important for

Figure 1. Flow chart of the phonon Monte Carlo algorithm.
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the reemitting process. The scattering process is discussed in Section 2.3. Finally, if the deviation of the
system state with respect to the previous state is smaller than the threshold, which is set to be 10−5 in the
paper, it is thought that the system arrives at steady state, and the simulation is ended.

2.2. Phonon drift

Energy particles, rather than phonon particles, are adopted in the simulations to conserve the total
thermal energy in a more precise way. If the total number of the energy particles keeps unchanged in
the propagation process, the thermal energy is conserved. One energy particle is just a bunch of
phonons with the same phonon vector and phonon branch, and the energy of each energy particle is
the same. The energy particle transportation equation is obtained by multiplying �hω to Equation (1),

@e
@t

þ vg � �e ¼ e0 � e
τR

þ ed � e
τN

(5)

The control-variate variance-reduction method [59] is applied to reduce the calculation task. The reference
energy density eref is chosen according to the circumstance. The phonon distribution of reference energy
density is fref, which is the equilibrium Plank distribution under temperature Tref. The deviation energy
density is defined as the difference between the local energy density and the reference one,

edevðxÞ ¼ eðxÞ � eref ðxÞ (6)

Thus, the transportation equation is rewritten as

@edev

@t
þ vg � �edev ¼ edev0 � edev

τR
þ edevd � edev

τN
(7)

In this way, the total number of energy particles can be reduced since only the deviation energy
density is considered. The energy of each particles is

EN ¼ E
N

(8)

where E and N are, respectively, the total thermal energy and total number of the particle bunches
emitted from the boundary per unit time. Since the phonon energy is determined by its frequency,
the number of phonons in each bunch Nω is different,

NωðωÞ ¼ EN
hω

(9)

The frequency of each bunch is determined by

PωðωÞ ¼
1

expð hω
kBT

Þ�1
� 1

expð hω
kBTref

Þ�1
hωDðωÞ

e� eref
(10)

D(ω) is the phonon density of state and Pω is the probability density function for phonon frequency.
The energy particles are transported in the medium before they are scattered. It is assumed that the
distribution dissipates exponentially. Therefore, the free path of one single bunch is assumed to be

l ¼ �lMFP lnRl (11)
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where Rl is a random number produced by the system. The mean-free path lMFP is derived from
Matthiessen’s rule,

l�1
MFP ¼ l�1

R þ l�1
N (12)

where lR and lN represent the mean-free paths of R process and N process, respectively.
Another significant problem is how to define temperature in the nonequilibrium state. Here, the

classical method of determining the temperature value is adopted, which counts the total energy
Ephonon in a unit volume. It is assumed that the temperature Tneq for Ephonon is equal to the
temperature Teq in the equilibrium state with the same thermal energy,

EphononðTneqÞ ¼
ð
K

ð
V

hω

expð hω
kBTeq

Þ � 1
dKdr (13)

Temperature might be problematically defined in this way since the state is far away from equili-
brium. This temperature is also called pseudo temperature in some studies [66]. Meanwhile, the
phonons reemitted after scattering depend on the temperature, and the change of the definition for
temperature will influence the results. Thus, it requires further investigations and discussion.

2.3. Phonon scattering

The phonons are scattered in two different ways, namely resistance scattering process and normal
scattering process. R process leads to the equilibrium Plank distribution, while N process gives
a tendency to the displaced Plank distribution. It is assumed that the phonons arrive at equilibrium
state after being scattered, so that the frequency and velocity of the reemitted phonons follow the
equilibrium Plank distribution or displaced Plank distribution. To describe the velocity vector in three-
dimensional problems, two space angles are introduced, i.e., polar angle θ and azimuth angle β as shown
in Figure 2. The value of θ varies in the range [0, π] while that of β varies in the range [0, 2π].

The scattering type that one phonon undergoes is determined by the scattering probability M,
which is defined as the portion of R scattering rates in total scatterings and calculated by the
relaxation times,

MðωÞ ¼ 1=τRðωÞ
1=τRðωÞ þ 1=τNðωÞ (14)

In the simulations, a random number RM is obtained from the system and if RM is smaller than M
(ω), then resistance scattering process occurs and vice versa. One difference between R process and
N process is that the velocity directions after R process are distributed evenly while N process has
a preferential direction along with the drift velocity. The schematic diagram for these two scattering
types has been plotted in Figure 3.

The DRTA method has been adopted, which assumes that phonons arrive at the steady state after
one phonon-free path. When R scattering occurs, the frequency and velocity of reemitted phonons
follow the equilibrium Plank distribution f0,

gR;ωðωÞ ¼

ðω

0

hxðf0 � fref ÞDðxÞdx

ðωD

0

hxðf0 � fref ÞDðxÞdx
(15)
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ω ¼ g�1
R;ωðRωÞ (16)

where Rω is the random number generated by the system. Equation (15) gives the probability
distribution function of ω and the inverse function Equation (16) gives the frequency based on
Rω. In the simulations, this process is done by interpolations. Then cosθ is determined by

cos θ ¼ 1� 2Rθ (17)

and β is determined by

β ¼ 2πRβ (18)

Figure 2. Schematic diagram for the phonon’s space angles θ and β. θ is the polar angle from the polar axis, and β is the azimuth
angle in the plane perpendicular to the polar axis.

Figure 3. Schematic diagram for phonon resistance and normal scattering processes, and the Lambert emission boundary and
directional emission boundary in MC simulations.
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Rθ and Rβ are also the system random numbers. As for N process, it depends on the drift velocity ud.
When the drift velocity ud is small, the displaced Plank distribution fd can be dealt with in
a linearized way,

f lineard ¼ 1

expð hωkBTÞ � 1
þ expð hωkBT

Þ
ðexpð hωkBTÞ � 1Þ2

hK � ud
kBT

¼ f0 þ f0ð1þ f0Þ hK � ud
kBT

(19)

Due to the influence of drift velocity, the phonon directions are more concentrated. Therefore, the
definition of drift velocity ud is important. Since the heat flux can be calculated in a statistical way,

q ¼ �
K
�
V
f lineard hωvgdKdr

¼ �
K
�
V

expð hω
kBT

Þ
ðexpð hω

kBT
Þ�1Þ2

hK�ud
kBT

hωvgdKdr
(20)

and ud is independent from phonon frequency [44], the relationship between the statistical heat flux
q and the drift velocity ud is derived,

ud ¼ q=pD ¼ q= �
K
�
V

expð hωkBT
Þ

ðexpð hωkBT
Þ � 1Þ2

hK � q
qj j

kBT
hωvgdKdr (21)

where pD is adopted to just simplify the expression, and |q| is the norm of heat flux q. In this way,
the scalar pD is an integration that is determined by temperature and cutoff frequency. The
interpolation matrix is calculated at the beginning which contains different values of pD at different
temperatures to reduce the calculation tasks. During one time step, the phonon particles could be
scattered or propagate along the original path. In this algorithm, the drift velocity is supposed to be
determined by those phonons that have been scattered in the scattering process, instead of all the
phonons in the area. So here uN is used to represent the drift velocity of the phonons being scattered
instead of ud. The heat flux qN is counted as

qN ¼
XNscattering

i

ENvg (22)

where Nscattering is the total number of phonons that are scattered in this time step. When N process
is coupled with R process, the heat flux is supposed to be the heat flux produced the phonons
scattered by normal scattering process. Then, the drift velocity uN is calculated as

uN ¼ qN
pD

(23)

Nevertheless, it is not proper to use this drift velocity uN directly in the probability density function,
because the heat flux qN only includes the contributions of those phonons that are scattered while pD
considers the influences of all the phonons in the area. Therefore, a revised drift velocity udr is
introduced to make the correction,

udr ¼ uN � Etotal
Escattering

(24)

Etotal is the total energy in the designated regime while Escattering is the energy of phonons which are
scattered in the normal scattering way. It can be demonstrated that by adopting udr as ud in Equation
(19), this algorithm conserves the phonon momentum after the scattering process. At the same time,
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in steady state udr becomes the same to ud, which is the drift velocity of all the phonons in this area.
The temperature T and drift velocity ud determine the reemitting process of phonons after normal
scattering process.

The phonon frequency after N process is determined by the following expression,

gN;ωðωÞ ¼

ðω
0
hxðf lineard � fref ÞDðxÞdxðωD

0
hxðf lineard � fref ÞDðxÞdx

(25)

ω ¼ g�1
N;ωðRωÞ (26)

As for the space angle, since the drift velocity is a vector, the polar axis can be taken along with the
direction of the drift velocity ud. Thus, the scattering directions of phonons can be obtained in the
relative coordinate. Then, the rotation matrix can be adopted to rotate the coordinate to the absolute
coordinate, where the phonons propagate in real space. Considering the linearized displaced Plank
distribution (Equation (19)), the probability function for polar angle θ is

gN;θðθÞ ¼

ðθ
0
p1 þ p2ud cos θ1½ �hω sin θ1DðωÞdθ1

P0
(27)

θ ¼ g�1
N;θðRθÞ (28)

where

p1 ¼ f0 � fref (29)

p2 ¼ f0ð1þ f0Þ hKkBT (30)

P0 ¼
ðπ
0
f0 � fref þ f0ð1þ f0Þ hKudkBT

cos θ1

� �
hω sin θ1dθ1 (31)

and gN,θ is called the probability distribution function while

fN;θðθ;ωÞ ¼ p1 þ p2ud cos θ½ �hω sin θDðωÞ=P0 (32)

is called the probability density function. The azimuth angle β is distributed evenly so that

β ¼ 2πRβ (33)

One problem occurs when the drift velocity is not small enough so that

f0 � fref
�� ��< f0ð1þ f0Þ h Kj j � udj j

kBT

����
���� (34)

The probability could be negative when the space angle θ is larger than the critical one,
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cos θcritical ¼
f0 � fref

f0ð1þ f0Þ h Kj j� udj j
kBT

(35)

So Equation (32) is incorrect for the negative probability case. Thinking about that f0 might be smaller
than fref, there are two different density distributions, as shown in Figure 4. It is found that the probability
density function and distribution function can be divided into three parts in both the two conditions.
When p1 > 0, in Figure 4a, the integration of part 1 in density function equals 1. The probability density in
part 2 is positive while that in part 3 is negative. The integration of probability densities of part 2 and part
3 is 0, so that the total distribution function comes to 1 in the end as shown in Figure 4b. When p1 < 0
which means the steady temperature T is lower than the temperature of circumstance Tref, in order to
guarantee the total integration positive, a minus sign must be added to the probability density function.
Then, the following conditions are satisfied: p1 > 0, p2 < 0. As shown in Figure 4c,d, part 1 is negative
while part 2 is positive, and the integration of these two parts is equal to 0. Then, the integration increases
monotonously to 1 in part 3. The negative probability density is unphysical but it is reasonable in
mathematical meaning. If only part 1 in Figure 4a and part 3 in Figure 4c are taken into consideration,
the phononmomentum cannot be conserved. It means that new energy particles are born after scattering
besides the original ones. Here the angle of zero limit θzero is introduced, which satisfies the following
equation:

ðθzero
0

p1 þ p2ud cos θ1½ �hω sin θ1DðωÞdθ1 ¼ P0 p1 > 0
0 p1 < 0

�
(36)

Figure 4. Probability density function fN,θ and probability distribution function gN,θ of the two different linearized displaced Plank
distribution when Equation (33) holds. (a) is the probability density function and (b) is the probability distribution function when
p1 > 0 while (c) and (d) are the probability density function and probability distribution function for p1 < 0, respectively.
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The sum of the accumulated probability from 0 to θzero is equal to 1 or 0. Therefore, θzero is the
boundary of part 1 and part 2 in Figure 4a and the boundary of part 2 and part 3 in Figure 4c.

Peraud [59] adopted negative energy particles as he introduced the control-variance variate-
reduction method in MC simulations. The reemitting particles at the same location and time step
had the same sign, determined by the deviation of local energy density with respect to the reference
one, free from phonon frequency. Lee [63] adopted particle pairs to conserve the phonon momen-
tum with the conservation of thermal energy in the normal scattering process. The signs of particle
energy were determined by the wave vectors qx and temperature gradient direction �T, where
positive energy particles were drawn at qx>0 and negative ones appeared when qx<0. In this paper,
the energy particle pairs are further developed, where the signs are related to phonon frequency and
phonon wave vector. In one pair, two particles have the same amount of energy with, however,
different signs. If the number of the negative energy particles is regarded to be minus, the total
particle number keeps the same because the same quantities of positive energy particles and negative
energy particles are born. Thus, the thermal energy is conserved strictly. For example, in Figure 4a,
the original energy particles, positive energy particles, and negative energy particles correspond to
part 1, part 2, and part 3, respectively. And the number of new energy particle pairs is determined by
the ratio of integration of part 2 I2 with respect to the integration of part 1 I1. Meanwhile, the
integration I2 is equal to minus I3,

I2 ¼ �I3 > 0 (37)

I2
I1
¼ nnew þ rnew (38)

where nnew and rnew are the integer part and decimal part of the ratio, respectively. If nnew≥1, then nnew
pairs of new phonon bunches are emitted. A random number rrand is generated by computer. If rrand
<rnew, then one new pair of phonon bunches is emitted. Otherwise, no new bunch is born. The concept of
negative energy particles might be confusing at first sight. Consider that the deviation distribution is
established on the foundation of a reference distribution fref and the negative sign only means that the
local energy density is lower than the reference one. Thus, it does not mean that the absolute thermal
energy is lower than 0. In this way, the negative energy particles can be seen as energy holes, correspond-
ing to positive electrons. The energy holes propagate in the opposite direction of the energy flux. In the
scope of this paper, the behaviors of negative energy particles and energy holes are demonstrated to be
the same, which is shown in the following section. However, they are not totally the same in the case
when the reference state is near absolute zero temperature. By introducing negative and positive energy
particle pairs in the MC algorithm, the phonon momentum can be conserved in a statistical view
according to the complete probability function while the total thermal energy keeps conserved strictly.
When the phonon number is large, the difference between the momentums before and after scattering
can be ignored.

As it is mentioned before, the rotation matrix is adopted since the drift velocity udr introduces the
spatial structure. The space angles of udr are θdr and βdr,

udr ¼ ðudr cos θdr; udr sin θdr cos βdr; udr sin θdr sin βdrÞT (39)

Therefore, for a wave vector K which is defined based on udr,

K ¼ ðK cos θ;K sin θ cos β;K sin θ sin βÞT (40)

the rotation matrix can be written as
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Mrotation ¼
cos θdr 0 � sin θdr

sin θdr cos βdr sin βdr cos θdr cos βdr
sin θdr sin βdr cos βdr cos θdr sin βdr

2
4

3
5 (41)

and the wave vector in the original coordinate K* is

K� ¼ MrotationK (42)

2.4. Boundary conditions

When phonons interact with a boundary, they are scattered in different ways according to different
boundary conditions. Based on the heat flux going across the boundary, isothermal boundary and
adiabatic boundary can be defined. The isothermal boundary emits the phonons into the regime
according to the boundary temperature and the phonons arriving at the boundary are absorbed
totally. The adiabatic boundary does not emit any phonons itself. Instead, it reflects back all the
phonons arriving at the boundary. When the phonons are reflected back, the rough boundary and
smooth boundary take effects. When the boundary is totally rough, the momentum of the arriving
phonons is totally destroyed and the phonons are reemitted randomly. When the boundary is totally
smooth, the phonon momentum parallel with the boundary is conserved while that perpendicular to
the boundary is inverted back. Here, it is assumed that the frequency of reemitting phonons follows
equilibrium Plank distribution under the boundary temperature.

The temperature boundary conditions and heat flux boundary conditions are defined in this paper as
follows. As the temperature boundary condition can be seen as the contact interface of two media with
different temperature, the phonons emitting from the boundary follow the Lambert distribution,

PðθÞ ¼ I0 cos θ (43)

Heat flux is a vector with length and direction. If a heat flux boundary condition is defined as

qxðx ¼ 0; y; zÞ ¼ q0
qyðx ¼ 0; y; zÞ ¼ 0
qzðx ¼ 0; y; zÞ ¼ 0

8<
: (44)

the directions of phonons are supposed to go along the direction of heat flux. In this paper, the
directional boundary is adopted to represent the heat flux boundary, where all the phonons have the
same direction to the heat flow. As for the boundary condition in Equation (44), the angle distribution is

PðθÞ ¼ δðθÞ (45)

and there are no other directions except the one along with x coordinate. The schematic diagrams of
Lambert emission and directional emission are plotted in Figure 2. Generally speaking, the heat flux
boundary can be regarded as the combination of directional emission and Lambert emission while
the ratio of these two kinds of distribution is determined by the state of the boundary and heating
ways, such as boundary roughness and laser heating.

2.5. Simulation details and verification

The total number of energy particles taken in this paper is 2 × 107, and the time step is 0.01 ps. The
regime is set to be 500 nm×200 nm×100 nm, and smooth boundary conditions are adopted in y and
z directions. If there is no specific illustration, the reference temperature is 100 K and the boundary
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temperature is set to be 101 K. The Debye temperature is 1200 K. The isothermal boundary
condition which emits and absorbs phonons based on constant temperature boundary is used. In
this paper, only one phonon branch is taken into consideration. Debye model is used which assumes
a linearized relationship between the phonon frequency and the phonon wave vector,

ω¼vgK (46)

where vg is the phonon group velocity, and the cutoff frequency is determined by the Debye
temperature. To make the principles clearer, gray model is adopted and the influences of phonon
frequency on relaxation times are ignored. The relaxation time of N process is assumed to be 10 ps.
Since the group velocity of phonons is 5000 m/s, the mean-free path of N process is 50 nm.

To verify this MC algorithm, the simulations results are compared with the previous results of
semi-analytic solutions [50] and another MC method proposed by Lee [63]. The results show the
effect of width with coarse boundary in phonon hydrodynamics regime. The phonon group velocity
is 104 m/s, and scattering rate for normal scattering process is 1010 s−1. The Debye temperature is set
to be 1200 K and the material temperature is 100 K as in reference [63]. The results in Figure 5
validate the current algorithm.

Besides, the influences of adopting negative energy particles instead of energy holes are analyzed.
Here, an initial value problem is simulated to compare these two methods. The calculation system
details are as follows. As for negative energy particles, the initial energy density distribution is set
to be,

densityðxÞ ¼ E0 þ �ΔE 2< x=D< 3
0 x< 2orx > 3

�
(47)

And as for energy hole, the initial energy distribution is,

Figure 5. Comparisons of the predictions for width-dependent thermal conductivity between the current algorithm and other
researches.
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densityðxÞ ¼ E0 þ 0 2< x=D< 3
ΔE x< 2orx > 3:

�
(48)

And in both the cases, the initial heat flux is zero. Figure 6a depicts the propagation profiles with
energy holes while Figure 6b depicts those with negative energy particles. These two methods lead to
the same time evolution profiles. This verification demonstrates that it is reasonable to introduce the
energy particles with negative energy in the simulations.

Lee [63] adopted a similar algorithm to simulate the momentum-conserved process by dividing
the probability function into two parts, which makes sure the energy before and after the process are
the same first and arrives at momentum conservation by adding and deleting phonons. The
algorithm in this paper uses the complete probability function to reemit phonons after scattering.
It can reduce the amount of phonons simulated in the process because the negative probability and
positive probability reduce each other via summing up. However, it also leads to the negative
probability problem, which is solved in this paper by positive and negative energy particle pairs.
More advantages are that this algorithm divides the contributions of normal scattering process and
resistance scattering process and that the introduction of the concept for phonon drift velocity makes
the simulations of N process clearer. Meanwhile, although the equality of energy holes and negative
energy particles has been widely used in steady heat transfer, the application in transient heat
conduction problems is testified in this paper to make sure the simulations feasible. Meanwhile,
although the equality of energy holes and negative energy particles has been widely used in steady
heat transfer, the application in transient heat conduction problems is testified in this paper to make
sure that the simulations are right.

3. Results and discussion

3.1. Characteristics of thermal waves

The non-Fourier models predict the wavelike behaviors of heat by introducing the derivative of heat
flux with respect to time. Experimental observations of the finite speed and the phase inversion
of second sound support the predictions of hyperbolic heat conduction equations. However, even
though it is declared that the second sound can be observed in two-dimensional materials, it is still
far away to measure the transient temperature change in such small length and interval to provide
more wavelike behavior evidences in experiments. Therefore, this section intends to observe the
wave behaviors from the microscopic level based on phonon MC simulations. All the simulations in
this section are set in the phonon hydrodynamic regime, where N process dominates and R process
is omitted.

Figure 6. Energy distribution patterns along with time when the energy holes (a) and the negative energy particles (b) are
adopted with the initial condition (47) or (48).
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3.1.1. Overshooting
Overshooting phenomenon occurs during the superposition of thermal waves, and it has been
predicted by various non-Fourier models [8–10, 43]. On the one hand, overshooting reveals the
failure of classical Fourier’s law because a higher temperature peak appears in the combined wave
than the original waves. On the other hand, it also leads to the discussion of unsteady temperature.
In this case, local thermal equilibrium assumption does not hold and the definition of temperature
fails. In some sense, the temperature here is more like the measurement of local phonon energy
density.

Overshooting usually occurs when a thermal wave is reflected back by boundary or two thermal
waves in opposite directions meet with each other [8], as shown in Figure 7. As for the reflection,
when the reflection wave meets with the incident wave, a higher temperature appears. In the
following case, λ is the phonon mean free path and the length of the regime is 10λ. The initial
temperature is the room temperature, 300 K and Debye temperature is 1200 K. All the boundaries
are set to be smooth and adiabatic, so that the thermal wave can be reflected back. At the beginning,
a heat pulse is applied to the left boundary and a thermal wave comes into being and propagates
toward right (Figure 7a). The temperature distribution of the incidence wave is plotted at time t = 40
ps, displayed in Figure 8. Then, when time comes to 50 ps, the thermal wave arrives at the boundary
as shown by the dash line and some phonons are reflected back. It is difficult to tell the incidence
wave and reflection wave individually, but the result of higher temperature peak value at time t = 60
ps implies the combination of these two waves. After that, the reflected thermal wave continues
propagating toward the left as depicted at t = 90 ps and 100 ps.

Another case happens when two thermal waves propagating in opposite directions meet with each
other. A plate with finite length is considered. Two heat pulses are applied at both boundaries of the plate,
producing two thermal waves in opposite directions, as shown in Figure 7b. Figure 9a describes the
temperature distribution patterns along with time when only the left boundary is heated by the heat
pulse. It is used to compare with Figure 9b where both sides are heated, to investigate the propagation
behaviors of the thermal waves. In Figure 9b, the solid black line depicts the temperature distribution of
these two thermal waves at t = 10 ps. At t = 20 ps, these two waves keep dissipating in the propagation
process andmeet with each other for the first time. Then, the meeting behaviors of these two waves occur
at t = 30 ps and 40 ps. It can be observed that the peak temperature value at time t = 30 ps is higher than
that at time t = 20 ps, demonstrating the existence of overshooting when two groups of phonons meet.
After that, the two waves separate and keep their original directions. The propagation patterns of an
individual thermal wave from the left boundary are plotted in Figure 9a to analyze the influences of
overshooting, where a single wave propagates forward with time going on. When the distribution
patterns at time t = 40 ps and 50 ps in Figure 9b are compared with those in Figure 9a, it can be seen
that after separation, the wave keeps its original shape and direction, free of the influence of the other
wave. It obeys the rules of wave superposition. The above behaviors are just like the behaviors of

Figure 7. Schematic diagrams of the simulation models. (a) A thermal wave is reflected back by the adiabatic boundary. (b) Two
thermal waves propagating in opposite directions meet with each other.
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mechanical waves. However, the difference is that these waves are produced by groups of phonons, which
are regarded as individual particles in solid physics. It is interesting to observe the wave behaviors
presented by particles.

3.1.2. Diffraction
Diffraction and refraction are thought to be symbols of waves [11–13]. For example, water ripples
change their directions when there is an obstacle or a hole in the path, and spread again with the
obstacle as the new wave source. In this section, the diffraction phenomenon of thermal wave has
been observed in a two-dimensional regime.

In order to simulate the diffraction phenomenon, a square plate with finite width and length is
considered as shown in Figure 10. The initial temperature is 100 K. The length and width of the plate
are equal and set to be 1, and the phonon mean free path is 0.2. x and y coordinates represent the
length and width, respectively. There is an adiabatic wall parallel with y coordinate, namely along the

Figure 8. Temperature profiles along with time at t = 40, 50, 60, 90, and 100 ps when a thermal wave meets an adiabatic
boundary and then moves back.

Figure 9. Temperature profiles along with time at t = 10, 20, 30, 40, and 50 ps for the situations: (a) A single thermal wave
propagates from the left to the right; (b) Two thermal waves from different boundaries meet with each other in opposite
directions.
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direction of width at x = 0.5. A hole appears in the wall from y = 0.48 to y = 0.52, which is smaller
than the wavelength of thermal wave, allowing phonons to get across the wall. As for thermal wave,
the wavelength becomes larger during the propagation. It is difficult to give a standard wavelength,
and the appearance wavelength represents the heat pulse duration, rather than the conventional
wavelength. Therefore, the hole is set to be as small as it can. At the beginning, the left boundary is
heated by heat pulse to produce a thermal wave. The temperature distribution in the plate at time t
= 15 ps, 30 ps, and 50 ps is depicted in Figure 11, represented by the heights of the profiles.

The temperature distribution in the whole plate is displayed in Figure 11A.1-A.3 with the color map
Legend 1. Considering that the thermal energy getting through the hole is much less than the thermal
energy in the left, the figures of the temperature distributions in the right regime are magnified specifically
in Figure 11B.1-B.3 where the color map obeys Legend 2. Figure 11A.1 shows the propagation patterns of
thermal wave before it meets the hole. At time t = 30 ps, the thermal wave arrives at the wall and some
phonons have already passed through the hole. There are ripples spreading in the right regime.
Figure 11B.2-B.3 has clearer distribution patterns for the ripples. It is very interesting to find the phase
inversion in Figure 11(A.3) and 11(B.3). The hole in the wall has already become the new wave source and
produces thermal perturbation. Meanwhile, the reflection wave appears, which propagates toward the left
after meeting the wall.

In the above simulations, the phenomena of overshooting and diffraction have been observed,
which are regarded as the wave characteristics. Although the heat transport is determined by the
phonons in dielectric solids which are regarded as particles, the transient processes own the wavelike
behaviors due to the activities of phonon groups. More wave characteristics of thermal waves can be
observed in the phonon level based on this MC algorithm.

3.2. Thermal wave and hyperbolic models

The wavelike behaviors of heat in crystals are demonstrated to originate from phonon momentum
conservation [43]. N process can keep the phonon momentum in the collision processes.
Nevertheless, there is another kind of heat transport phenomenon where phonon momentum is
conserved, i.e., ballistic heat transport. Therefore, the wavelike behaviors can be sorted into two
categories based on the scattering mechanism, namely hydrodynamic thermal wave [44,45] and
ballistic thermal wave [40–43].

3.2.1. Ballistic and hydrodynamic thermal waves
Even though thermal waves are sorted into two categories, these two waves always exist at the same
time in heat conduction problems. Thermal waves induced by temperature boundary and heat flux

Figure 10. Schematic diagram for the diffraction simulation models.
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boundary are analyzed below. A one-dimensional heat conduction problem is considered, which can
be seen as a plate with finite length and infinite width and height. The initial temperature is 300 K
and Debye temperature is 1200 K. A sine-shape heat pulse is applied to the left boundary,

q ¼ A1ð1� cosð2πt=t0ÞÞ t< t0
0 t > t0

�
(49)

as is shown in Figure 12. t0 is equal to 10 ps and A1 is a constant coefficient. A single thermal wave is
produced from the left boundary and its propagation patterns are shown in Figure 13.

Figure 13a–c shows the temperature profiles, energy density profiles and drift velocity ratio
distribution in the temperature boundary at different times t = 10, 25, 50, 75, and 100 ps, and
Figure 13d–f show these patterns under the heat flux boundary. The drift velocity ratio is the ratio of
the drift velocity ud with respect to the phonon velocity vg,

r ¼ ud
vg

(50)

The propagation of thermal waves describes the transport process of thermal energy and this process
can be presented by temperature distribution, energy density distribution, or heat flux distribution.
In this paper, to make it easier to understand, the temperature field is adopted to depict the thermal
wave propagation. The differences of these two boundary conditions have already been discussed in
Section 2.4. In the simulations, R process is ignored and all the collisions are momentum-conserved.
As for the temperature boundary, phonons are emitted from the left boundary according to the
Lambert distribution. The energy density distribution in Figure 13b,e is normalized by the peak
value at time t = 10 ps. It can be seen that temperature wave profiles come into being at t = 10 ps,
and then the profiles propagates forward. During that process, the peak value of the temperature
profile decreases and the wavelength becomes larger. It means that the thermal wave has been
dissipated. It is very interesting to discuss the dissipation in phonon hydrodynamic regime, because

Figure 11. Temperature distribution patterns for the diffraction phenomena of thermal waves when they pass through a hole in
the adiabatic wall at time t = 15, 30, and 50 ps. The heights and colors of the profiles denote the different values based on the
color map legend 1 on the right. (B.1-B.3) are the magnified figures based on Legend 2 for the right zone.
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there is no resistance in the propagation and collision processes and dissipation is not supposed to
appear as well. However, the peak value of the wave profiles does become lower. This kind of
dissipation comes actually from the spatial direction dispersion. The phonons have different direc-
tions in space although they have the same drift velocity. Faster phonons go further and the distance
between the front and the end of the wave becomes larger and larger, leading to the dissipation of
thermal waves. This kind of dissipation is called spatial dissipation in this paper, different from the
resistance dissipation induced by R process, where the phonon momentum is seriously destroyed.

The speed direction dispersion has been widely investigated. Phonon Boltzmann equation indicated
the convective effect of phonon momentum, which shows the spatial distribution of phonon velocity
directions [65]. Guyer and Krumhansl [31,32] added the viscosity term and gradient term to the
macroscale heat conduction equation based on linearized phonon Boltzmann equation to describe the
effects of boundary and spatial dispersion. Hardy [67] defined the velocity of second sound considering
the phonon velocity in real space. Recently, Tang [41] discussed the spatial dissipation in ballistic thermal

Figure 12. Sketch diagram for the one-dimensional heat conduction problem where the left boundary is heated by a sine-shape
heat pulse to produce a single thermal wave.

Figure 13. Propagation patterns of hydrodynamic thermal waves represented by temperature, normalized energy density, and
drift velocity ratio. (a-c), with temperature boundary condition following Lambert distribution, are the temperature patterns (a),
energy density patterns (b), and drift velocity ratio patterns (c). (d-f) with heat flux boundary condition following directional
distribution, are the temperature distribution (d), energy density distribution (e) and drift velocity ratio distribution (f), respectively.
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waves. As for normal scattering process, Lee [63] investigated the thermal resistance caused by the
transition from non-collective distribution to collective distribution in the view of entropy production.
He demonstrated that there is no entropy production in phonon hydrodynamics when there is no spatial
dispersion. Here, we study the spatial dissipation in transient heat conduction.

In Figure 13c, it is found that the drift velocity ratio profile propagates along with the propagation of
temperature profile, and the peak of the temperature profile has higher drift velocity. The phonons do
not have a unified drift velocity in transient heat transport. In fact, according to the definition of drift
velocity, the drift velocity profiles reveal the distribution of heat flux in the numerical regime. The
transport of thermal wave is also the transport of heat flux, as mentioned before. In Figure 13d–f, the
directional heat flux boundary is considered. The ballistic phonons produce a sharp front of wave at time
t = 10 ps as shown in Figure 13d. As the phonons are scattered with time going on, the thermal wave
comes to the hydrodynamic type. At t = 25 ps, a coupled wave shape by ballistic thermal wave and
hydrodynamic thermal wave is displayed. The sharp front belongs to the ballistic part and the gentle tail
is caused by the hydrodynamic part. Since most of the ballistic phonons have already been scattered at
time t = 50 ps, the final profile patterns of Figure 13a,d become the same, implying a completely
hydrodynamic thermal wave.

Before discussing the difference between hydrodynamic and ballistic thermal waves, some
numerical experiments are conducted. The directional heat flux boundary is adopted and two
different heat pulse types are applied, namely the rectangular type and triangular type, as shown
in Figure 14. As for the rectangular heat pulse, the heat flux boundary is taken as

qðx ¼ 0; tÞ ¼ A2 t � t0
0 t > t0

�
(51)

And the triangular heat pulse is

qðx ¼ 0; tÞ ¼
A2

2t
t0

t � t0
2

A2ð2� 2t
t0
Þ t0

2 < t � t0
0 t > t0

8<
: (52)

In the above equations, A2 is the heat pulse amplitude, defined as

A2 ¼ σðT4
b � T4

0Þ (53)

where Tb and T0 are, respectively, the given boundary temperature Tb = 305 K and reference
temperature T0 = 300 K. σ is the Stephen-Boltzmann constant. Since the ballistic thermal wave

Figure 14. Shapes of the heat pulse applied to the left boundary.
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dissipates exponentially with propagation distance, the profiles are displayed in the range from 0 to
4λ before it is totally dissipated. The energy distribution patterns along with time of the ballistic
thermal wave and hydrodynamic thermal wave have already been plotted in Figure 15. As for
ballistic thermal wave, the mean-free path of R process is taken to be 10λ and N process is ignored.
For hydrodynamic thermal wave, phonon collisions are significant and N process dominates the
whole scattering process while R process is ignored.

The behaviors of ballistic thermal wave have been investigated by Tang et al. [40–43]. It has been
found that since the phonons are almost free from scatterings, the propagation behaviors of ballistic
thermal wave are significantly influenced by the boundary conditions. And the directional emission
has higher indexes of the energy MSD-time than Lambert emission, because the Lambert emission
boundary introduces more spatial dispersion of phonons [42]. Meanwhile, the speed of the ballistic
thermal wave is demonstrated to be the phonon group velocity. Here, in this model, only the ballistic
thermal waves produced by directional emission boundary are considered. Therefore, the spatial
dispersion can be ignored, and the behaviors are influenced only by R process, whose influence is
called resistance dissipation in this paper. Compared with resistance dissipation, the influence on the
wave profiles by spatial dispersive phonon distribution is called the spatial dissipation. The char-
acteristics of ballistic thermal wave which is only influenced by resistance dissipation can be found
from Figure 15a,b. First, the propagation distance is limited to one or two MFP because the profiles
dissipate exponentially. Second, the propagation speed of ballistic thermal wave is the phonon group
velocity as it has been demonstrated in the reference [43]. When the phonon branches and
dispersion relation are considered, the speed of wave front is determined by the highest speed of
phonons. Third, the shapes of the distribution profiles are maintained during propagation. When the

Figure 15. Propagation patterns of the energy density distribution for the ballistic thermal wave and hydrodynamic thermal wave
under heat flux boundary condition. (a) and (b) are the energy density patterns of ballistic thermal wave where N process is
ignored with a rectangular heat pulse (a) and a triangular heat pulse (b). (c) and (d) are the patterns of hydrodynamic thermal
wave where R process is ignored with a rectangular heat pulse (c) and a triangular heat pulse (d).
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inputting heat pulse is rectangular, the thermal wave has a trapezoid shape until ballistic phonons are
totally scattered. It is the same for triangular heat pulse, as shown in Figure 15a,b. Thus, the ways of
heating are important. Finally, the resistance dissipation destroys the drift behaviors of phonons and
leaves a diffusive energy distribution after the thermal waves pass through. Therefore, the energy
density behind the wave peak won’t be zero and a temperature rise can be found. Meanwhile, when
temperature boundary is applied, the boundary emission follows Lambert distribution and the
spatial dissipation also takes effect in ballistic thermal waves.

Hydrodynamic thermal waves, which are free from resistance dissipation and influenced only by
spatial dissipation, are plotted in Figure 15c,d. The sharp front represents the ballistic thermal wave
because these phonons are not scattered and the hydrodynamic thermal wave is behind it, as shown
in the figure. They enjoy longer travel distance than ballistic thermal waves. Due to the conservation
of phonon momentum, the propagation distance can be up to 10 MFP. Second, although it was
declared that the speed of thermal wave was supposed to be vsound=

ffiffiffi
3

p
, where vsound is the speed of

sound wave, it is found that the relationship might be not true. The definition of thermal wave speed
is difficult because of the spatial dissipation and every part of the profile has different speed. The
position of the wave front and that of the wave peak are plotted along with time as Figure 16. The
wave front and wave peak propagate with constant speeds, but the ratio of them is 1.62, which is
a little lower than

ffiffiffi
3

p
, implying a higher peak speed than the prediction. The speed of wave peak

represents the speed of maximum energy density, instead of the speed of thermal waves. Third, the
final profile patterns get to be the same as time goes on. These shapes are free from the ways of
heating, because when all the phonons are scattered, they follow the same distribution, namely the
displaced Plank distribution. Finally, since all the phonon momentum is conserved, no thermal
energy is left behind the waves. Thus, all the phonons keep moving forward, even though their speed
might be slow. Another difference that can be told from Figure 15c,d is that the ballistic thermal
wave has a higher wave peak than the hydrodynamic thermal wave because the energy in ballistic
thermal wave is more concentrated.

Spatial dissipation and resistance dissipation influence the thermal waves in different ways [41–43].
Spatial dissipation conserves the phonon momentum so that the heat flux is conserved while the

Figure 16. Positions of the wave peak and the wave front of the hydrodynamic thermal wave profiles along with the time.
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distribution is dispersive. However, it makes the wavelength longer and peak value lower because of the
speed difference of phonons. Resistance dissipation keeps the thermal wave shapes and decreases the
peak value. At the same time, the heat flux is reduced.

3.2.2. Hyperbolic models
Since the propagation patterns of thermal wave are mainly influenced by resistance dissipation and
spatial dissipation, macroscopic heat conduction equations are supposed to include these two effects.
In Cattaneo-Vernotte equation [27,28],

qþ τ
@q
@t

¼ �k�T (54)

the first term depicts the resistance dissipation well and it gives an exponential dissipation figure.
However, the spatial dissipation is not considered in this equation. Guyer-Krumhansl equation [31,32]
attempts to include the spatial dissipation by adding a gradient term of the divergence of heat flux,

qþ τR
@q
@t

¼ �k�T þ τRτNv2s
5

ð�2qþ 2�� � qÞ (55)

Nevertheless, it transforms the hyperbolic heat conduction equation into a parabolic one, leading to
other problems. In one-dimensional heat conduction problem, Equation (56) becomes

qþ τR
@q
@t

¼ �k
@T
@x

þ 3τRτNv2s
5

@2q
@x2

(56)

The last term in the above equation can be regarded as the viscous term of heat flux, analogous with
Navier-Stokes equation in fluid mechanics. As it is known, the first term, which represents the
resistance dissipation, leads the profiles to dissipate exponentially. Therefore, here the first term is
omitted so that the attention can be focused on the viscous effects,

τR
@q
@t

¼ �k
@T
@x

þm
@2q
@x2

(57)

Another hydrodynamic model is the thermomass (TM) model [34–36], which considers the propa-
gation of extra mass due to thermal vibration. This model introduces the convective term, which
represents the momentum drift,

@qi
@t

þ @ðqiqje Þ
@xj

¼ � 2γe
c2ρ

@e
@xi

� 2γeCV

Kc2
qi (58)

The second term is the convective term. To highlight the influences of phonon momentum drift, this
equation in one-dimensional heat conduction problems is simplified to

τTM
@q
@t

þ τTM
@ðqqe Þ
@x

¼ �k
@e
@x

� q (59)

And the last term is ignored for the same purpose,

τTM
@q
@t

þ τTM
@ðqqe Þ
@x

¼ �k
@e
@x

(60)

As the MC method simulates a boundary value problem, where heat flux at the boundary is set to be
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qðt; x ¼ 0Þ ¼ q0 t � tpulse
0 t > tpulse

�
(61)

The initial conditions are

qðx; t ¼ 0Þ ¼ 0 (62)

Tðx; t ¼ 0Þ ¼ T0 (63)

In the numerical simulations, all the quantities are normalized and the heat pulse interval tpulse is set
to be 0.1. If there are no specific illustrations, the nondimensional coefficients are all set to be 1. The
length of the regime is 10, which is normalized by MFP λ. The staggered grid is adopted where the
temperature field and heat flux field are positioned at the nodes and between the nodes. As for the
temporal term, forward difference algorithm is used and the spatial term is solved by the first-order
upwind scheme. The grid number is set to be 1000 and the time interval is 1 × 10−6. The simulation
model is the same to Figure 12. More numerical details can be found in reference [68].

The simulation results depict the temperature distribution along with time for Equations (57) and
(60) at t = 0.1, 0.3, 0.5, 0.7, and 0.9. The effects of the viscous term have been shown in Figure 17a,
where the profiles have longer wavelength and lower peak temperature with time going on. This
tendency is much similar to that in the MC simulations. However, the differences are that the
viscous term predicted a higher speed for the wave front and the viscosity adds to the dissipation,
leaving the temperature rise behind the wave. In Figure 17b the convective term is found to establish
a sharp wave front and make the thermal energy more concentrated. This pattern is different from
the propagation patterns obtained from MC simulations with directional emission boundary.

These two models are not suitable to describe the spatial resistance, because neither of them
consider the phonon velocity dispersion. If the influences of phonon bunches and dispersion relation
are taken into consideration, the heat transport phenomena will become more complex. It requires
further investigations to find a proper macroscale equation.

3.3. Resistance dissipation and Ziman hydrodynamics

When the influences of R process cannot be ignored and N process still dominates, the heat
transport mode belongs to Ziman hydrodynamics [45]. Here, the spatial dissipation and resistance
dissipation are both significant. At that time, both ballistic thermal wave and hydrodynamic thermal
wave can be observed. When R process dominates the scattering process which means that the MFP

Figure 17. Temperature distribution patterns along with time predicted by simplified GK equation and TM equation in one-
dimensional heat conduction problems.
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of resistance scattering process is shorter than that of normal scattering process, thermal waves
dissipate rapidly before enough phonons are scattered by N process. And it is difficult to observe the
hydrodynamic thermal wave. The scattering probability M (Equation (14)) is adopted to represent
the portion of R process in the total scattering rate. When M > 0.5, R process is stronger than
N process and vice versa. At the left limit when M = 0, the heat transport mode belongs to Poiseuille
hydrodynamics. When M > 0 and M < 0.5, it is the Ziman hydrodynamics. When M > 0.5, the
diffusive effect governs. And at the right limit M = 1.0, the thermal energy transport process can be
described by Fourier’s law, where only the resistance dissipation is considered.

Here in this section, the propagation characteristics of thermal wave in the Ziman hydrodynamic
regime and the diffusive regime are discussed. Figure 18 shows the temperature distribution profile
of thermal wave along with time at different values of M. The thermal wave is induced by the left
temperature boundary T = 301 K and the reference temperature is 300 K. The schematic diagram is
the same to Figure 12. It can be found that there is no obvious boundary between Ziman hydro-
dynamic regime and diffusive regime, so the transition is smooth. In Figure 18a, the temperature
profile spreads forward when the thermal energy propagates from the left boundary to the right.
Compared with the thermal wave in Poiseuille hydrodynamic regime, both of their wave peaks have
the tendency to move forward and Figure 18a displays stronger dissipation effect, which comes from
resistance dissipation. When M = 0.3 in Figure 18b, the moving tendency of wave peak is obvious at
the beginning and diminishes at last. However, it does not mean that the thermal energy stops
propagating. It continues spreading forward, as the local energy density gradient determines the heat
flux. The behaviors of wave peak imply the exhaustion of initial phonon momentum. When M = 0.7
in Figure 18c, which is already in the diffusive regime according to the definition, it is hard to tell the
movement of thermal wave. The thermal energy cannot flow from the low temperature to the high
temperature, because here the diffusive equation governs. When M = 1.0 in Figure 18d, it can be
predicted by Fourier’s law.

Figure 18. Comparisons of the temperature distribution patterns along with time at different scattering probability values, M = 0.1
(a), 0.3 (b), 0.7 (c) and 1.0 (d).
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Figure 19 shows the position figures of wave front and wave peak of thermal wave at different M,
and the line slope implies the wave speed. As the speed of wave front equals the speed of ballistic
thermal wave, they are the same at different values of M. What is concerned here is the speed of the
wave peak. They are almost the same when the traveling distance is smaller than one MFP λ. When
the traveling distance is longer than λ, the peak position continues moving forward and the speed
slows down then. With larger M, the speed becomes slower. When the scattering probability M is
larger than 0.5, the speed of wave peak decreases to zero when time t is larger than 20 ps. The
differences of speeds demonstrate the transition of transport mode from hydrodynamic regime to
diffusive regime. Since the phonon momentum is conserved, phonon density profiles in Poiseuille
hydrodynamic regime propagate with a constant speed. When R process takes effects, the moving
tendency decreases with phonon momentum destruction. In the diffusive regime, there are no
obvious transport phenomena of thermal energy profiles. Thus, the speed becomes zero.

4. Conclusions

This paper intends to give a relatively microscopic description for thermal waves in phonon
hydrodynamic regime based on an improved phonon MC algorithm. The MC algorithm is devel-
oped based on the Callaway’s dual relaxation time model. In this model, phonon scatterings are
divided into two types, namely normal scattering process and resistance scattering process. The
behaviors of phonons after N process are determined by the local energy density and phonon
momentum. As it is demonstrated that phonons in different frequencies in phonon hydrodynamics
share the same drift velocity, the phonon momentum can be represented by the phonon drift
velocity. The application of control-variate variance-reduction method in the MC algorithm leads
to the problem of negative probability, resulting in the mathematical dissipation. Positive and
negative energy particle couplings are adopted to deal with this problem, and make sure the phonon
momentum is conserved under the condition of thermal energy conservation. Besides, this algorithm
is based on more general three-dimensional regime, and it has various applications. Furthermore, by

Figure 19. Positons of the wave front and wave peak of thermal waves in the media along with time at M = 0.1, 0.3, 0.7, and 1.0.
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introducing the concept of scattering probability M, it can be used to deal with the coupling of
N process and R process in heat conduction.

The wavelike behaviors of heat transport have been demonstrated in Poiseuille hydrodynamic
regime from the view of phonons. Overshooting and diffraction phenomena have been observed.
One problem that should be noticed is the definition of temperature, which is not suitable for
transient heat transport. In this paper, the temperature is more like the symbol of local energy
density. The overshooting phenomenon occurs when thermal wave is reflected back by the boundary
or two thermal waves meet with each other. It is demonstrated that superposition principle takes
effect and a higher temperature peak shows up. Another wave characteristic is the diffraction, which
occurs when the waves get across the obstacles or holes with the size equivalent to or smaller than
the wavelength. When thermal waves go across a hole, new waves are found to spread away with the
hole as new wave source.

One advantage of the MC method is that it deals with N process and R process individually and it
is easy to analyze the influences of each process. According to the differences in phonon scatterings,
the thermal waves are divided into two categories, namely ballistic thermal wave and hydrodynamic
thermal wave. They are sorted by the scattering type, traveling length, speed, and shapes. The
concept of second sound is thought to be the experimental observation of the combination of
these two kinds of waves. When thermal wave propagates, two kinds of dissipation are involved, that
is, spatial dissipation and resistance dissipation. The former keeps the conservation of phonon
momentum, but lengthens the wavelength and decreases the peak value, while the latter reduces
the phonon momentum and maintains the wavelength. Besides, the temperature profiles predicted
by the phonon MC simulations are compared with those hyperbolic heat conduction equations. The
influences of viscous term and convective term are revealed by numerical simulations. It is found
that the current models are not suitable to describe the spatial dissipation effect, which results from
the spatial dispersion of phonon directions. More accurate hyperbolic models are required in further
investigation.

When resistance scattering process cannot be ignored, the heat transport mode belongs to Ziman
hydrodynamic regime or diffusive regimes. These two heat conduction modes are different in
propagation distances, propagation speeds and patterns. As the scattering probability M increases
from 0 to 1, the propagation patterns of thermal wave go from hyperbolic type to parabolic type, and
the energy transport efficiency becomes lower and lower.

Here, the influences of dispersion relation, phonon branches, and the difference of density of
state are omitted to make a simple model. However, they are important in actual materials and
might give different predictions on thermal waves. Therefore, this paper avoids the quantitative
description and tries to give the qualitative principles and theoretical explanations. Though this
paper aims to reveal the intrinsic nature of different types of thermal waves, further investigations
are highly desired.
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